Tuesday, November 11, 2014

Carbohydrates

Carbohydrates



carbohydrate is a large biological molecule, or macromolecule, consisting of carbon (C), hydrogen (H), and oxygen (O) atoms, usually with a hydrogen:oxygenatom ratio of 2:1 (as in water); in other words, with the empirical formula Cm(H2O)n (where m could be different from n).[1] Some exceptions exist; for example,deoxyribose, a sugar component of DNA,[2] has the empirical formula C5H10O4.[3] Carbohydrates are technically hydrates of carbon;[4] structurally it is more accurate to view them as polyhydroxy aldehydes and ketones.[5]
The term is most common in biochemistry, where it is a synonym of saccharide. The carbohydrates (saccharides) are divided into four chemical groups:monosaccharidesdisaccharidesoligosaccharides, and polysaccharides. In general, the monosaccharides and disaccharides, which are smaller (lower molecular weight) carbohydrates, are commonly referred to as sugars.[6] The word saccharide comes from the Greek word σάκχαρον (sákkharon), meaning "sugar." While the scientific nomenclature of carbohydrates is complex, the names of the monosaccharides and disaccharides very often end in the suffix -ose. For example, grape sugar is the monosaccharide glucosecane sugar is the disaccharide sucrose, and milk sugar is the disaccharide lactose (see illustration).
Carbohydrates perform numerous roles in living organisms. Polysaccharides serve for the storage of energy (e.g., starch and glycogen), and as structural components (e.g., cellulose in plants and chitin in arthropods). The 5-carbon monosaccharide ribose is an important component of coenzymes (e.g., ATPFAD, andNAD) and the backbone of the genetic molecule known as RNA. The related deoxyribose is a component of DNA. Saccharides and their derivatives include many other important biomolecules that play key roles in theimmune systemfertilization, preventing pathogenesisblood clotting, and development.[7]
In food science and in many informal contexts, the term carbohydrate often means any food that is particularly rich in the complex carbohydrate starch (such as cerealsbread, and pasta) or simple carbohydrates, such as sugar (found in candyjams, and desserts).

Structure

Formerly the name "carbohydrate" was used in chemistry for any compound with the formula Cm (H2O) n. Following this definition, some chemists considered formaldehyde (CH2O) to be the simplest carbohydrate,[8]while others claimed that title for glycolaldehyde.[9] Today the term is generally understood in the biochemistry sense, which excludes compounds with only one or two carbons.
Natural saccharides are generally built of simple carbohydrates called monosaccharides with general formula (CH2O)n where n is three or more. A typical monosaccharide has the structure H-(CHOH)x(C=O)-(CHOH)y-H, that is, an aldehyde or ketone with many hydroxyl groups added, usually one on each carbon atom that is not part of the aldehyde or ketone functional group. Examples of monosaccharides are glucosefructose, andglyceraldehydes. However, some biological substances commonly called "monosaccharides" do not conform to this formula (e.g., uronic acids and deoxy-sugars such as fucose), and there are many chemicals that do conform to this formula but are not considered to be monosaccharides (e.g., formaldehyde CH2O and inositol (CH2O)6).[10]
The open-chain form of a monosaccharide often coexists with a closed ring form where the aldehyde/ketone carbonyl group carbon (C=O) and hydroxyl group (-OH) react forming a hemiacetal with a new C-O-C bridge.
Monosaccharides can be linked together into what are called polysaccharides (or oligosaccharides) in a large variety of ways. Many carbohydrates contain one or more modified monosaccharide units that have had one or more groups replaced or removed. For example, deoxyribose, a component of DNA, is a modified version of ribosechitin is composed of repeating units of N-acetyl glucosamine, a nitrogen-containing form of glucose.

No comments:

Post a Comment